64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SAR based on self consistent classifier

ORCID Icon, ORCID Icon & ORCID Icon
Pages 793-804 | Received 29 Aug 2022, Accepted 20 Oct 2022, Published online: 11 Nov 2022
 

ABSTRACT

The accuracy and performance of (Q)SAR models depend significantly on the data used for training. Datasets prepared on the basis of publicly available databases contain structures belonging to different chemical classes and have a highly imbalanced actives/inactives ratio. Currently, hundreds of structural descriptors are used in (Q)SAR studies. The abundance of structural descriptors gives rise to the problem of the constructed (Q)SAR models stability. The methods frequently used for the selection of a small fraction of the ‘best’ descriptors usually do not have sufficient mathematical justification. We propose a new approach to a self-consistent classifier for SAR analysis in order to overcome these problems. Logistic (SCLC) and extreme (SCEC) extensions of self-consistent regression (SCR) were implemented to enhance the classification capabilities of SCR. The approach was applied to classification models’ development for inhibiting activity endpoints in HIV-1-related data and toxicity endpoints with subsequent fivefold cross-validation to estimate the models’ performance. Comparison of the proposed SCLC and SCEC models with those developed using the original SCR and support vector machine demonstrated the comparable accuracy. Advantages in feature selection using our approach provide more generalizable (Q)SAR models. In particular, the crucial factors responsible for the observed value are determined unambiguously.

Acknowledgements

The study was carried out within the framework of Russian Science Foundation grant No. 19-15-00396, https://rscf.ru/project/19-15-00396/.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2022.2139751

Additional information

Funding

This work was supported by the Russian Science Foundation grant No. 19-15-00396.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.