131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of two combined series of triketones with HPPD inhibitory activity by molecular modelling

, &
Pages 231-246 | Received 17 Jan 2023, Accepted 13 Mar 2023, Published online: 23 Mar 2023
 

ABSTRACT

Triketones are suitable compounds for 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition and are important compounds for eliminating agricultural weeds. We report herein quantitative structure-activity relationship (QSAR) modelling and docking studies for a series of triketone-quinoline hybrids and 2-(aryloxyacetyl)cyclohexane-1,3-diones with the aim of proposing new chemical candidates that exhibit improved performance as herbicides. The QSAR models obtained were reliable and predictive (average r2, q2, and r2pred of 0.72, 0.51, and 0.71, respectively). Guided by multivariate image analysis of the PLS regression coefficients and variable importance in projection scores, the substituent effects could be analysed, and a promising derivative with R1 = H, R2 = CN, and R3 = 5,7,8-triCl at the triketone-quinoline scaffold (P18) was proposed. Docking studies demonstrated that π–π stacking interactions and specific interactions between the substituents and amino acid residues in the binding site of the Arabidopsis thaliana HPPD (AtHPPD) enzyme support the desired bioactivity. In addition, compared to a benchmark commercial triketone (mesotrione), the proposed compounds are more lipophilic and less mobile in soil rich in organic matter and are less prone to contaminate groundwater.

Acknowledgements

The authors are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, funding code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 306830/2021-3), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support of this research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [306830/2021-3]; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [001]; Fundação de Amparo à Pesquisa do Estado de Minas Gerais [APQ-00383-15].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.