194
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach

&
Pages 459-474 | Received 29 May 2023, Accepted 15 Jun 2023, Published online: 23 Jun 2023
 

ABSTRACT

Metal oxide nanoparticles (MeOxNPs) can be made safer by understanding the interaction between the immune system and nanoparticles. A nano-quantitative structure–activity relationship (nano-QSAR) model can be used to evaluate nanoparticle risk quickly and conveniently. The present work attempts to develop nano-QSAR models to determine the inflammatory potential of MeOxNPs based on the THP-1 cell line. A comprehensive dataset comprising 32 MeOxNPs was used to develop a regression model with fold change (FC) of pro-inflammatory cytokine interleukin (IL)-1beta (IL-1b) release in the THP-1 cell line as the endpoint. Further, the same number of MeOx NPs with varying doses was modelled for the cell viability [-ln(p/(1-p))] endpoint. The results obtained from regression models were statistically significant. The descriptors obtained from the developed predictive models inferred that dose, electronegativity and the presence of metal ions and oxygen can be responsible for IL-1β leakage from the THP-1 cell line. Based on our results, we can conclude that periodic table-based descriptors, incorporated into the QSAR models, are reliable for modelling pro-inflammatory potential. Researchers can use these comprehensive results to design metal oxide nanoparticles with lower toxicity and determine the cause of pro-inflammatory conditions induced by MeOxNPs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2023.2227557

Additional information

Funding

This study was funded by Indian Council of Medical Research (ICMR), New Delhi, in the form of a Senior Research Fellowship to JR.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.