153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dexmedetomidine attenuates pneumocyte apoptosis and inflammation induced by aortic ischemia-reperfusion injury

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 595-600 | Received 05 May 2022, Accepted 18 Jun 2022, Published online: 05 Jul 2022
 

ABSTRACT

Objective

Despite significant improvements in interventional vascular aneurysm repair procedures and intensive care patient management, there has been no significant decrease in mortality due to ruptured abdominal aortic aneurysm. Oxidative stress is known to play a key role in secondary organ damage due to infrarenal aortic clamping. The aim of this study was to examine the potential protective effect of the alpha-2 adrenergic receptor agonist dexmedetomidine (DMT) on aortic occlusion-induced lung injury.

Methods

Thirty Sprague Dawley rats were allocated into control, ischemia-reperfusion (IR), and IR+DMT groups randomly. Vascular clamps were attached to the abdominal aorta in the IR and IR+DMT groups. Two-hour reperfusion was established 1 h after ischemia. The IR+DMT group received a single intraperitoneal 100 µg dose of DMT 30 min before infrarenal abdominal aortic clamping.

Results

IR due to aortic occlusion led to apoptosis, widespread inflammation, alveolar septal wall thickening due to bleeding and vascular congestion were observed in both types I and II pneumocytes. Malondialdehyde levels increased while glutathione decreased. However, DMT was found to lower apoptotic pneumocytes, alveolar-septal thickness, hemorrhage, vascular congestion, and malondialdehyde levels, while glutathione levels in lung tissue increased.

Conclusions

This study is the first to address the effects of DMT on the lung in a ruptured abdominal aortic aneurysm model. Our findings suggest that the alpha-2 adrenergic receptor agonist DMT reduces oxidative stress and apoptosis, thus protecting against aortic occlusion-induced pulmonary injury.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability statement

All data generated during this study are available in this published article.

Additional information

Funding

This work was supported by the Recep Tayyip Erdogan University Scientific Research Support Fund under Grant [TSA-2018-878].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.