1,499
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemical Abatement of Hydrogen Sulfide from Waste Streams

, , , , &
Pages 1555-1578 | Published online: 29 Apr 2015
 

Abstract

Hydrogen sulfide is ubiquitously present in many waste streams originating from industrial activities as well as in sewage. It needs to be removed as it is toxic, corrosive, and odorous. Conventional abatement strategies involve physicochemical methods, which require significant amounts of chemicals and/or high energy input. Considering the limitations of physicochemical methods, there is a need for more cost-effective and sustainable abatement strategies. Recent advances in electrode materials and operation have stimulated interest in electrochemical methods for pollutant remediation. Several electrochemical approaches for sulfide abatement have been proposed over the last few years. Electrochemical techniques offer several advantages including the avoidance of dosage, handling, transport and storage of potentially hazardous chemicals, and the possibility of recovering sulfide or sulfur from wastewater as a product. This paper reviews electrochemical strategies that have been proposed for removal of dissolved and gaseous hydrogen sulfide. The advantages and disadvantages as well as the economic potential of each of the proposed methods are discussed. The technical aspects and key challenges to enable full-scale implementation are highlighted. Finally, opportunities for expanding electrochemical methods for sulfide abatement are presented.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.