2,273
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Treatment of municipal wastewater with aerobic granular sludge

, , ORCID Icon &
Pages 119-166 | Published online: 19 Mar 2018
 

ABSTRACT

Treatment of municipal wastewaters with aerobic granular sludge (AGS) has been extensively researched in the past decade and has now become a mature option for implementation. Aerobic granules are distinguished from activated sludge flocs through their larger size and more compact and spherical structure. Due to these properties, granules settle rapidly and can therefore contribute to compact treatment processes through high sludge concentrations and short settling times. In this review, the factors that promote granulation in treatment processes are identified and discussed and the experience of municipal wastewater treatment with AGS at laboratory-, pilot-, and full-scale are critically evaluated. The most important factors to promote granulation include exposing the biomass to relatively high concentrations of contaminants in sequencing batch reactors, promoting slow-growing microorganisms and applying a relatively short settling time. Enhanced biological phosphorus removal is preferably integrated with AGS and the large size of the granules makes simultaneous nitrification (at the surface of the granules) and denitrification (at the inner, anoxic parts) feasible. We propose directions for future research including further optimization of AGS to obtain stable and low effluent nutrient concentrations in line with increasingly stringent upcoming effluent demands.

Acknowledgments

The financial support from the Swedish Water & Wastewater Association (Project number 16–121) and Sweden Water Research is kindly acknowledged. The authors are also grateful to Jonatan Flodin (H2OLAND), Jesper Olsson (Uppsala Vatten och Avfall), Maria Jonstrup (VA SYD), Karin Myring (Strömstads kommun), and Jerry Johansson (Strömstads kommun) for support and fruitful discussions during the project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.