424
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influences and impacts of biofouling in SWRO desalination plants

&
Pages 1281-1301 | Published online: 12 May 2020
 

Abstract

The ability to produce fresh potable water is an ever-growing challenge, especially with an increase in drought conditions worldwide. Due to its capacity to treat different types of water, reverse osmosis (RO) technology is an increasingly popular solution to the water shortage problem. The major restriction associated with the treatment of water by RO technology is the fouling of the RO membrane, in particular through biofouling. Membrane fouling is a multifaceted problem that causes an increase in operating pressure, frequent cleaning and limited membrane lifespan. The current paper summarizes the impact of biofouling of RO membranes used in seawater desalination plants. Following a brief introduction, the elements that contribute to biofouling are discussed: biofilm formation, role of extracellular polymeric substances (EPS), marine environment, developmental phases of biofouling. Following this, is a section on the implications of membrane biofouling especially permeate flux and salt rejection. The final section focuses on the new phenomenon of compression and hydraulic resistance of biofilms. Lastly, considerations on future research requirements on biofouling and its control in seawater reverse osmosis (SWRO) membrane systems are presented at the end of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.