931
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Genotoxicity of quinone: An insight on DNA adducts and its LC-MS-based detection

, , & ORCID Icon
Pages 4217-4240 | Published online: 11 Nov 2021
 

Abstract

Quinones are potent genotoxic agents through generating reactive oxygen species or undergo covalent bonding to modify the nucleobases of DNA. The formation of DNA adducts is an early indication of cancer, as it may lead to gene mutation, thereby initiating tumor development. The present review aims to summarize different types of quinone-induced DNA damages and the corresponding DNA adducts. In addition to the considerably stable naphthoquinone and halobenzoquinones in the environment, quinones are also metabolically activated from estrogen, bisphenol A, ochratoxin A, polychlorinated biphenyls, benzo[a]pyrene and polybrominated diphenyl ethers, in which the inducement from these pollutants to produce DNA adducts were systematically discussed. Liquid chromatography-mass spectrometry (LC-MS)-based method with high accuracy and sensitivity for the detection of DNA adducts in mononucleotides, DNA duplexes, and biological samples was methodically summarized. It is believed that the presence of dione moiety in quinones is an imperative element that induce the formation of DNA adducts. The investigation on DNA adducts is helpful for understanding the generation, transformation, and repair of DNA damages, and for elucidating the underlying mechanism of carcinogenesis. This review provides a new perspective to assess the toxicological potential of quinones, and intends to put forward strategies of analyzing DNA adducts, which act as biomarkers, for indicating the potential health risks of multiDNA damages.

HANDLING EDITORS:

Disclosure statement

There was no conflict of interest.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21806138, No. 22176171, No. 21836003) and by the National Key Research and Development Program of China (No. 2020YFC1806903).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.