1,184
Views
9
CrossRef citations to date
0
Altmetric
Invited Reviews

Possible pathways for mercury methylation in oxic marine waters

, &
Pages 3997-4015 | Published online: 08 Dec 2021
 

Abstract

Mercury (Hg) is a global contaminant that presents public health risks through seafood consumption primarily in the form of monomethylmercury (MMHg). Methylation of inorganic Hg in water column has been considered a major source of seawater MMHg, but the known Hg methylation by anaerobes possessing the hgcAB gene cluster in anoxic environments could not directly explain the formation and widespread presence of MMHg in seawater where oxic conditions are usually present. In this review, we synthesized the information on previously reported possible pathways to explain the Hg methylation in oxic marine waters, including Hg methylation by (1) methyl donors like organic compounds and organometallic complexes in seawater via abiotic pathways, (2) anaerobic microbes in anoxic microenvironments within oxic seawater, and (3) aerobic microbes in oxic seawater. We evaluated the potential contributions of respective Hg methylation pathways to MMHg in seawaters and discussed the perspectives on future research needs for an improved understanding of seawater Hg methylation. We inferred that while all proposed Hg methylation pathways remain to be further verified, at least one and maybe all of them are plausible depending on ocean conditions. Development and application of new techniques, e.g., quantifying Hg isotope fractionation, would help differentiate (e.g., abiotic versus biotic) Hg methylation pathways. Comprehensive studies toward bridging the gaps between microbial gene screening and Hg methylating capability, between Hg methylation incubation and field MMHg measurement, and between mechanistic Hg methylation studies and environmental relevance will benefit the elucidation of Hg methylation pathways and MMHg distribution in seawater.

Graphical Abstract

HANDLING EDITORS:

Acknowledgments

This is contribution number 1375 from the Southeast Environmental Research Center in the Institute of Water & Environment at Florida International University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Authors gratefully acknowledge National Science Foundation programs (ECS1905239) for the support of the work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.