297
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

, , &
Published online: 26 Feb 2024
 

Abstract

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.

Graphical Abstract

Handling Editors:

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the National Natural Science Foundation of China (22276020) and the National Key R&D Program of China (2022YFC3902100). We also acknowledge the funding from Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (KLIEEE-21-01).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.