80
Views
0
CrossRef citations to date
0
Altmetric
Research

Effect of Municipal Solid Waste Compost on Mine Soils As Evaluated by Chemical, Biological And Biochemical Properties of Soil

, , &
Pages 89-96 | Published online: 23 Jul 2013
 

Abstract

Composts are increasingly used in land rehabilitation because they can improve soil quality and reduce the need for inorganic fertilizers. Their use contributes to an integrated approach to waste management by promoting recycling of nutrients and minimizing final disposal of organic residues that, due to their composition, can pose problems to agricultural soils. We investigated whether compost from mixed municipal solid waste (MSW) could be used to remediate two soils from a mine contaminated with trace elements. One of the soils was less acidic and had a greater content of Cu and Zn while the other had more Pb and a lower pH. The effect of MSW was evaluated by plant growth, trace element leachability, ecotoxicity of soil leachates, and biological and biochemical properties of soils. Growth of perennial ryegrass (Lolium perenne L. cv. Victorian) was stimulated in the MSW compost-amended soils compared with respective controls or with acidic soil when limed. After ryegrass had been growing for 119 days, the amount of water-extractable Zn was lower in MSW compost-amended soils, while the opposite was true for water-extractable Cu. Water-extractable Pb increased following MSW compost application to one soil and decreased in the other. The greatest dehydrogenase activity was obtained in amended limed soil, while the number of culturable bacteria and fungi and the activities of cellulase and β-glucosidase were similar in soil that was limed or following MSW compost application. In contrast, urease activity was repressed in limed or MSW compost-amended soils. Leachates from unamended soils were toxic towards Daphnia magna. Liming the very acidic soil led to a decrease in the toxicity of the leachate, but it was only in MSW compost-amended soils that ecotoxicity was no longer detected.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.