45
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Improving the performance of SOMFA by use of standard multivariate methods

, , &
Pages 567-579 | Received 06 May 2005, Accepted 28 Aug 2005, Published online: 20 Aug 2006
 

Abstract

Self-Organizing Molecular Field Analysis (SOMFA) comes with a built-in regression methodology, the Self-Organizing Regression (SOR), instead of relying on external methods such as PLS. In this article we present a proof of the equivalence between SOR and SIMPLS with one principal component. Thus, the modest performance of SOMFA on complex datasets can be primarily attributed to the low performance of the SOMFA regression methodology. A multi-component extension of the original SOR methodology (MCSOR) is introduced, and the performances of SOR, MCSOR and SIMPLS are compared using several datasets. The results indicate that in general the performance of SOMFA models is greatly improved if SOR is replaced with a more sophisticated regression method. The results obtained for the Cramer (CBG) dataset further underline the fact that it is a very poor benchmark dataset and should not be used to evaluate the performance of QSAR techniques.

Acknowledgements

Samuli-Petrus Korhonen thanks The National Graduate School of Informational and Structural Biology (ISB) for financial support. Kari Tuppurainen thanks The Academy of Finland (Grant #200978). Mikael Peräkylä thanks The Academy of Finland (Grant #104622).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.