Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 3
296
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electronic structure study of the bimetallic Cu1-xZnx alloy thin films

, , , , &
Pages 193-197 | Received 31 Jul 2017, Accepted 27 Sep 2017, Published online: 26 Oct 2017
 

Abstract

A series of Zn doped copper materials were investigated upon their crystal and electronic structure with the general formula Cu1-xZnx. CuZn alloys were produced via electrodeposition method. Galvanostatic deposition was preferred for the deposition. Crystal properties of the samples were studied via X-ray diffraction (XRD) patterns and supported by the X-ray absorption fine structure spectroscopy (XAFS) data. According to the crystal structure analysis, crystal geometries of the substituted samples were mainly determined in bcc cubic. The study has revealed that, low amount of Zn substitution (0.1M) are inactive in the molecular interplays and treated as an impurity in fcc copper environment. However, higher Zn concentrations (> 0.1 M) have built bcc structure under the influence of the highly overlapped 4p levels wavefunctions of the neighbouring Cu and Zn atoms. Thus, 0.1 M zinc substitution has been determined as a threshold of the phase transition from fcc to the bcc structure.

Acknowledgement

The author would like to thank to the staff of BL8 at SLRI (Siam Photon) both for their technical support and great hospitality.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.