358
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Performance of Nonrecursive Latent Variable Models under Misspecification

, &
Pages 12-23 | Published online: 08 May 2018
 

Abstract

A problem central to structural equation modeling is measurement model specification error and its propagation into the structural part of nonrecursive latent variable models. Full-information estimation techniques such as maximum likelihood are consistent when the model is correctly specified and the sample size large enough; however, any misspecification within the model can affect parameter estimates in other parts of the model. The goals of this study included comparing the bias, efficiency, and accuracy of hypothesis tests in nonrecursive latent variable models with indirect and direct feedback loops. We compare the performance of maximum likelihood, two-stage least-squares and Bayesian estimators in nonrecursive latent variable models with indirect and direct feedback loops under various degrees of misspecification in small to moderate sample size conditions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 412.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.