144
Views
34
CrossRef citations to date
0
Altmetric
Original

Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide

, , , &
Pages 95-102 | Published online: 07 Jul 2009
 

Abstract

The anti-oxidant and cyto-protective activity of quercetin against tertiary-butylhydroperoxide (t-BOOH) induced oxidative stress on C6 glial cells is reported. Exposure of the cells to t-BOOH resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) generation and lipid peroxidation. There was a significant increase in DNA strand breaks and fall in reduced GSH levels in cells exposed to t-BOOH. A significant increase in calcium ion influx was noticed in cells exposed to t-BOOH. Pre-treatment of cells with quercetin, vitamin C (vit C), Trolox, and deferoxamine (DFO) significantly inhibited t-BOOH induced cytotoxicity and ROS generation. Pretreatment of cells with quercetin, Trolox and DFO inhibited the DNA damage, maintained higher GSH levels and prevented calcium influx significantly. Although vit C protected the cells from cytotoxicity induced by t-BOOH, the intracellular Ca2+ levels were significantly higher than the control cells. However, anti-oxidants like butylated hydroxy toluene (BHT), vitamin E (vit E), N-acetyl cysteine (NAC) did not have significant cytoprotection against t-BOOH induced oxidative injury in C6 glial cells.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.