54
Views
4
CrossRef citations to date
0
Altmetric
Original

Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes

, , , &
Pages 857-863 | Received 20 Dec 2005, Published online: 07 Jul 2009
 

Abstract

Recently we demonstrated that lactate dehydrogenase (LDH)-bound NADH is oxidized by O2, H2O2, HNO2 and peroxynitrite predominantly via a chain radical mechanism which is propagated by superoxide. Here we studied both whether other dehydrogenases also increase their coenzymes' reactivity towards these oxidants and whether a chain radical mechanism is operating. Almost all dehydrogenases increased the oxidation of their physiological coenzymes by at least one of the oxidants. The oxidation of NADH or NADPH depended both on the binding dehydrogenase and the applied oxidant and in some cases the reactions were remarkably fast. The highest rate constant (k = 370 M− 1 s− 1) was found for the reaction of HNO2 with NADH bound to alcohol dehydrogenase. Regardless of the applied oxidant, superoxide dismutase failed to inhibit the oxidation of protein-bound NADH and NADPH. We therefore conclude that several dehydrogenases increase the oxidation of NADH and/or NADPH by the employed set of oxidants in bimolecular reactions, but, unlike LDH, do not mediate a -dependent chain radical mechanism.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.