223
Views
21
CrossRef citations to date
0
Altmetric
Original

Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats

, , , , , , , & show all
Pages 707-715 | Received 09 Apr 2008, Published online: 07 Jul 2009
 

Abstract

The present work investigated the in vitro effects of isovaleric acid (IVA) and isovalerylglycine (IVG), which accumulate in isovaleric acidemia (IVAcidemia), on important parameters of oxidative stress in supernatants and mitochondrial preparations from brain of 30-day-old rats. IVG, but not IVA, significantly increased TBA-RS and chemiluminescence values in cortical supernatants. Furthermore, the addition of free radical scavengers fully prevented IVG-induced increase of TBA-RS. IVG also decreased GSH concentrations, whereas IVA did not modify this parameter in brain supernatants. Furthermore, IVG did not alter lipid peroxidation or GSH concentrations in mitochondrial preparations, indicating that the generation of oxidants by IVG was dependent on cytosolic mechanisms. On the other hand, IVA significantly induced carbonyl formation both in supernatants and purified mitochondrial preparations from rat brain, with no effect observed for IVG. Therefore, it is presumed that oxidative damage may be at least in part involved in the pathophysiology of the neuropathology of IVAcidemia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.