138
Views
13
CrossRef citations to date
0
Altmetric
Original

Differential effects of retinol and retinoic acid on cell proliferation: A role for reactive species and redox-dependent mechanisms in retinol supplementation

, &
Pages 778-788 | Received 17 Jun 2008, Published online: 07 Jul 2009
 

Abstract

While some authors suggest that retinoids are potential anti-proliferative and antioxidant agents, evidence has suggested those present pro-oxidant properties, which might lead to malignant proliferation. These discordances stimulated one to investigate the proliferative/anti-proliferative properties of two major retinoids, retinol (ROH) and retinoic acid (RA). In Sertoli cells, ROH increased proliferation while RA was anti-proliferative. ROH increased DNA synthesis, decreased p21 levels and induced cell cycle progression. ROH increased reactive species (RS) production and stimulated p38, JNK1/2 and ERK1/2 MAPKs activation. Antioxidant treatment with Trolox blocked ROH-induced RS production, MAPKs activation and proliferation; MAPKs inhibition blocked proliferation. The potential sites of RS indicate that ROH-induced RS is promoted via mitochondria and xanthine oxidase. In contrast, RA induced neither RS production nor MAPKs activation. RA decreased DNA synthesis and increased p21 leading to cell arrest. Overall, data show that ROH, but not RA, is able to induce proliferation through non-classical and redox-dependent mechanisms.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.