309
Views
35
CrossRef citations to date
0
Altmetric
Original

Superoxide production: A procalcifying cell signalling event in osteoblastic differentiation of vascular smooth muscle cells exposed to calcification media

, , , , & , PhD , MD
Pages 789-797 | Received 23 May 2008, Published online: 07 Jul 2009
 

Abstract

Recent studies showed that hydrogen peroxide (H2O2) enhanced bone markers expression in vascular smooth muscle cells (VSMCs) implicated in osteoblastic differentiation. This study aimed at investigating the role of NAD(P)H oxidase in vascular calcification processes. A7r5 rat VSMCs were incubated with β-glycerophosphate (10 mm) or uremic serum to induce a diffuse mineralization. H2O2 production by VSMCs was determinated by chemiluminescence. NAD(P)H oxidase sub-unit (p22phox), Cbfa-1, ERK phosphorylation and bone alkaline phosphatase (ALP) expressions were measured by Western blotting. VSMCs exhibited higher production of H2O2 and early expression of p22phox with β-glycerophosphate or uremic serum within 24 h of treatment. β-glycerophosphate-induced oxidative stress was associated with Cbfa-1 expression followed by ALP expression and activity, meanwhile the VSMCs expressing ALP diffusely calcified their extracellular matrix. Interestingly, diphenyleneiodonium partly prevented the osteoblastic differentiation. Results from this model strongly suggest a major implication of vascular NAD(P)H oxidase in vascular calcification supported by VSMCs osteoblastic differentiation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.