151
Views
5
CrossRef citations to date
0
Altmetric
Original

Osmotic stress induces loss of glutathione and increases the sensitivity to oxidative stress in H9c2 cardiac myocytes

, , , , & , PhD
Pages 262-271 | Received 29 Sep 2008, Published online: 07 Jul 2009
 

Abstract

It has been observed that H9c2 cardiac cells cultured in physiologic solutions exhibit delayed cell death after repeated medium replacements, of which the cause was the relatively mild osmotic challenges during the renewal of the culture medium. Interestingly, the cell damage was associated with altered intracellular GSH homeostasis. Therefore, this study attempted to elucidate the effects of osmotic stress on GSH metabolism. In cells subjected to osmotic stress by lowering the NaCl concentration of the medium, the cell swelling was rapidly counterbalanced, but the intracellular GSH content was significantly lower in 3 h. Meanwhile, the ratio of GSH-to-GSSG was not affected. As expected, osmotic stress also increased the sensitivity to H2O2, which was attributable to the decrease of GSH content. The decrease of GSH content was similarly evident when the synthetic pathways of GSH were blocked by BSO or acivicin. It was concluded that osmotic stress induced the decrease of intracellular GSH content by increased consumption and this loss of GSH rendered the cells susceptible to a subsequent oxidative stress.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.