113
Views
6
CrossRef citations to date
0
Altmetric
Original

Separable detection of lipophilic- and hydrophilic-phase free radicals from the ESR spectrum of nitroxyl radical in transient MCAO mice

, , , &
Pages 844-851 | Received 19 Mar 2009, Published online: 01 Sep 2009
 

Abstract

Free radicals are believed to be key factors that promote ischemia reperfusion injury in the brain. This study used the characteristic spectrum of methoxycarbonyl-PROXYL to detect free radical reactions in hydrophilic and lipophilic compartments in a transient middle cerebral artery occlusion (MCAO) mouse model. Methoxycarbonyl-PROXYL, which has a high water/octanol partition coefficient, allows the detection of nitroxyl radical in both compartments simultaneously. Free radicals generation was analysed from the enhanced ESR signal decay rate of methoxycarbonyl-PROXYL. The signal decay rate in the lipidic compartment was significantly enhanced 1 h after reperfusion following MCAO. The enhanced signal decay rate was significantly suppressed by Trolox. The accumulation of lipid peroxidation products increased by 6 h post-reperfusion and was suppressed by methoxycarbonyl-PROXYL or Trolox. These results demonstrate that information pertaining to different sites of free radical generation in vivo can be obtained simultaneously and that lipid-derived radicals are generated in transient MCAO mice.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.