270
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Azaadamantyl nitroxide spin label: complexation with β-cyclodextrin and electron spin relaxation

, , &
Pages 319-326 | Received 14 Jul 2017, Accepted 23 Sep 2017, Published online: 16 Nov 2017
 

Abstract

An iodoacetamide azaadamantyl spin label was studied in fluid solution and in 9:1 trehalose:sucrose glass. In 9:1 toluene:CH2Cl2 solution at 293 K, the isotropic nitrogen hyperfine coupling is 19.2 G, T1 is 0.37 µs and T2 is 0.30–0.35 µs. Between about 80 and 150 K 1/Tm in 9:1 trehalose:sucrose is approximately independent of temperature demonstrating that the absence of methyl groups decreases 1/Tm relative to that which is observed in spin labels with methyl groups on the alpha carbons. Spin lattice relaxation rates between about 80 and 293 K in 9:1 trehalose:sucrose are similar to those observed for other nitroxide spin labels, consistent with the expectation that relaxation is dominated by Raman and local mode processes. Although complexation of the azaadamantyl spin label with β-cyclodextrin slows tumbling in aqueous solution by about a factor of 10, it has little impact on 1/T1 or 1/Tm in 9:1 trehalose:sucrose between 80 and 293 K.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Financial support from NIH [R01 CA177744] to GRE and SSE, NIH [R01 EB019950] to AR and SSE, NIH [R01 GM124310] to AR and SSE, and NSF [CHE-1665256] to AR is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.