578
Views
52
CrossRef citations to date
0
Altmetric
Original Article

Hydrogen sulfide increases glutathione biosynthesis, and glucose uptake and utilisation in C2C12 mouse myotubes

ORCID Icon &
Pages 288-303 | Received 26 Sep 2017, Accepted 19 Jan 2018, Published online: 12 Mar 2018
 

Abstract

Diabetic patients have lower blood concentrations of hydrogen sulfide (H2S), L-cysteine (LC), and glutathione (GSH). Using C2C12 mouse myotubes as a model, this study investigates the hypothesis that the beneficial effects of LC supplementation are mediated by upregulation of the H2S status under diabetic conditions. Results show that exogenous administration of sodium hydrosulfide (NaHS, 10 or 20 µM; 6 hours), a H2S donor, significantly (p < .05) upregulates the gene expression of cystathionine-γ-lyase (CSE), LC transporter (Slc7a11/xCT), and the genes involved in GSH biosynthesis. Additionally, it reduces homocysteine (HCys), reactive oxygen species (ROS) production, and enhances cellular LC, H2S, and glucose uptake and utilisation in myoblasts. The use of CSE siRNA to induce deficient endogenous H2S production causes an increase in H2O2, ROS, HCys levels, and downregulation of GSH biosynthesis pathway enzymes. In additional, CSE knockdown downregulates glucose transporter type 4 (GLUT4) and gene expression of its key transcription factors, and reduces glucose uptake in C2C12 myotubes. CSE knockdown cells showed specific increases in the protein S-glutathionylation of LC transporter and GLUT4 along with increased total protein S-glutathionylation. Taken together, evidence from this study provides molecular insights into the importance of the CSE/H2S system in maintaining the cellular glutathione and glucose homeostasis in C2C12 myotubes.

Acknowledgements

The authors acknowledge Ms. Morgan for critical proof reading and excellent editing of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by grants from the National Institutes of Health/National Center for Complementary and Integrative Health [RO1 AT007442, 2013–2016], and the Malcolm W. Feist Cardiovascular Research Fellowship and Endowed Chair in Diabetes, Center for Cardiovascular Diseases and Sciences (CCDS) from LSUHSC, Shreveport.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.