319
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Glutaredoxin 3 promotes migration and invasion via the Notch signalling pathway in oral squamous cell carcinoma

, , , , &
Pages 390-401 | Received 24 Sep 2017, Accepted 28 Jan 2018, Published online: 20 Feb 2018
 

Abstract

Substantial evidence indicates that the alteration of the cellular redox status is a critical factor involved in cell growth and death and results in tumourigenesis. Cancer cells have an efficient antioxidant system to counteract the increased generation of ROS. However, whether this ability to survive high levels of ROS has an important role in the growth and metastasis of tumours is not well understood. Glutaredoxin 3 (GLRX3), also known as TXNL2, Grx3 and PICOT, maintains a low level of ROS, thus contributing to the survival and metastasis of several types of cancer. However, little is known about the role of GLRX3 and the underlying mechanisms that suppress oral squamous cell carcinoma (OSCC) progression. Here, by using immunohistochemical staining, we demonstrated that GLRX3 was overexpressed in human OSCC, and enhanced GLRX3 expression correlated with metastasis and with decreased overall patient survival. Knockdown of GLRX3 in human OSCC cell lines reduced Notch activity by reversing the epithelial–mesenchymal transition (EMT), resulting in the inhibition of in vitro migration and invasion. Importantly, knockdown of GLRX3 triggered the generation of ROS. Furthermore, N-acetyl cysteine (NAC), an ROS scavenger, enhanced the effects of GLRX3 knockdown on Notch-dependent EMT. Collectively, these findings suggested the vital roles of GLRX3 in OSCC progression through its relationship with EMT progression, and these data also suggest that a strategy of blocking ROS to enhance the activity of GLRX3 knockdown warrants further attention in the treatment of OSCC.

View correction statement:
Correction

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article was originally published with errors, which have now been corrected in the online version. Please see Correction (http://dx.doi.org/10.1080/10715762.2022.2028388)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.