369
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Hydrogen peroxide: a potent inducer of differentiation of human adipose-derived stem cells into chondrocytes

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 763-774 | Received 15 Dec 2017, Accepted 13 Apr 2018, Published online: 22 May 2018
 

Abstract

Common protocols for chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) are generally expensive and time-consuming and, so far, have not successfully recreated pure chondrocytes. We hypothesise that a low level of H2O2 may induce differentiation of ADSCs into chondrocytes in a shorter incubation time and relatively lower cost. Therefore, this study aimed to comparatively investigate the effectiveness of H2O2-containing or free medium in the induction of ADSCs to chondrocytes. ADSCs were isolated from the lipoaspirate of four healthy females and evaluated by immunophenotyping for their CD90, CD73, CD44, CD34, and CD45 cell surface markers. Chondrogenic differentiation was carried out using differentiation medium in the presence or absence of 10 and 50 µM H2O2 in normal and three-dimensional culture system. The intracellular contents of reactive oxygen species (ROS) were detected by flow cytometry and fluorescence microscopy. The hydroxyproline, was assessed as marker of collagen and the glycosaminoglycans (GAGs) content was both qualitatively detected and quantitatively determined. Real-time PCR was performed to determine the gene expression level of aggrecan (ACAN), type-II collagen, and transcription factor Sox9. H2O2-treated cells showed pre-chondrocyte morphology on day 1 and chondrocyte pellets were formed on day 14. H2O2-treated cells induced greater pellet sizes and showed significantly higher content of GAGs and hydroxyproline level compared with untreated cells. The gene expression levels of ACAN, collagen type-II, and Sox9 were markedly upregulated by H2O2. Our findings showed for the first time that H2O2-containing differentiation medium is potentially more effective than H2O2-free differentiation medium in the induction of chondrogensis of ADSCs.

Acknowledgments

This research is supported by the Hamadan University of Medical Sciences and did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.