154
Views
1
CrossRef citations to date
0
Altmetric
Article

Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1158-1169 | Received 04 Jul 2018, Accepted 11 Oct 2018, Published online: 26 Dec 2018
 

Abstract

Selenium (Se) containing organic compounds, such as ebselen (Ebs) and diphenyl diselenide [(PhSe)2], have been used as pharmacological agents due to their antioxidant properties. Tellurium (Te) does not have any biological function in mammals, but Te-containing organic compounds, such as diphenyl ditelluride [(PhTe)2], has been used both as an antioxidant or neurotoxic agent. At high concentrations, these compounds cause toxicity by oxidising thiol and selenol groups of proteins. Here, we analysed whether these compounds could modulate reactive species (RS) production, apoptosis and antioxidant gene expression profile of some selenoproteins and antioxidant enzymes or transcription factors in leukocytes isolated from human blood. Since no data is available about their accumulation in isolated leukocytes, we determine their concentration in the cells by CG-MS. Apoptosis (propidium iodide) and RS production (dichloro fluorescein) were determined by flow cytometry. The expression of CAT, SOD1, GPX3, GPX4, TRXR1, and NFLE2L2 genes were analysed by RT-PCR. (PhTe)2 was the only compound able to increase apoptosis rate. (PhSe)2 altered the expression of CAT and SOD1, and this was associated with a high RS production. All compounds decreased the expression of GPX3 but did not alter GPX4 and TRXR1 expression. All compounds decreased NFE2L2 expression (Ebs > (PhTe)2> (PhSe)2). We hypothesise that the toxicity induced by these organochalcogens is not directly related to their ability of inducing RS production.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is supported by the financial support of CNPq, CAPES and FAPERGS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.