720
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1

, , , , , , , , , & ORCID Icon show all
Pages 63-76 | Received 26 Oct 2021, Accepted 30 Jan 2022, Published online: 10 Feb 2022
 

Abstract

Oxidative stress is an important contributor to the development of osteoporosis. Melatonin, an indoleamine secreted by the pineal gland, has antioxidant properties. This study aims to explore whether melatonin can promote bone formation and elucidate the mechanisms underlying this process. In this study, we used an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in MC3T3-E1 cells and an in vivo ovariectomized osteoporotic bone defect model in rats to explore the protective effects of melatonin against osteoporotic bone defects along with the mechanism underlying these effects. We found that melatonin significantly increased alkaline phosphatase activity, mineralization capacity, and the expression of BMP2, RUNX2, and OPN in MC3T3-E1 cells treated with H2O2. Furthermore, melatonin was found to activate SIRT1, SIRT3 and inhibit p66Shc, reduce the intracellular reactive oxygen species levels, stabilize mitochondria, reduce malondialdehyde levels, increase superoxide dismutase activity, and reduce apoptosis in MC3T3-E1 cells treated with H2O2. Intriguingly, these effects could be reversed by the SIRT1 inhibitor EX527. In vivo experiments confirmed that melatonin improves the microstructure and bone mineral density of the distal femoral bone trabecula and promotes bone formation. Meanwhile, melatonin activated SIRT1, inhibited p66Shc and increased SIRT3 expression. Taken together, our findings showed that melatonin can restrain oxidative damage in MC3T3-E1 cells and promote osteogenesis by activating SIRT1 which regulate the activity of SIRT3 and inhibit the expression of p66Shc, suggesting that melatonin could be a potential therapeutic agent for osteoporosis-related bone metabolic diseases.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by the National Natural Science Foundation of China [81341054, 81171732], Talented Scholars of Wannan Medical College [YR201917], Technology Mountaineering Program of Yijishan Hospital, and Wannan Medical College [PF2019005].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.