23
Views
21
CrossRef citations to date
0
Altmetric
Original Article

The influence of α-amanitin on the NaCl-induced up-regulation of antioxidant enzyme activity in cotton callus tissue

, , , , &
Pages 429-438 | Received 10 Sep 1998, Published online: 07 Jul 2009
 

Abstract

Liquid suspensions of cotton callus tissue from a NaCl-sensitive cell line and a NaCl-tolerant cell line were subjected to the following treatments: (a) 0 and 150 mM NaCl, respectively (controls); (b) 75 and 250 mM NaCl, respectively; (c) 100 ng ml-1 α-amanitin; or (d) pretreatment for 2 h with 100 ng ml-1 α-amanitin followed by the respective NaCl treatments. The callus tissue was harvested at 0, 0.5, 1, 2, 4, and 8 h and analyzed for antioxidant enzyme activity. In the NaCl-tolerant callus, the 250 mM NaCl treatment resulted in transient 2- to 4-fold increases above the control levels in the activities of ascorbate peroxidase, catalase, glutathione reductase, and peroxidase within 1 h after treatment, while superoxide dismutase activity increased 4-fold within 4 h. This rapid increase suggests that the up-regulation of antioxidant capacity is an early response to NaCl stress and perhaps provides protection against oxidative damage until other acclimating mechanisms can be invoked. In the control callus, peroxidase activity remained unchanged, and significant increases in the other enzymes were not observed until 8 h after treatment with 75mM NaCl. Pre-treatment with α-amanitin prior to the NaCl treatment completely inhibited the NaCl-induced increase in the activities of all five enzymes in both cell lines. This data supports the conclusion that the NaCl-induced up-regulation of antioxidant enzyme activity in cotton callus tissue is transcriptionally regulated, proceeding via a de novo synthesis of poly(A)+RNA and is not due to the translation of existing transcripts or the mobilization of existing enzyme pools. In addition, the results suggest that it is not only the up-regulation of anti-oxidant activity that bestows a degree of tolerance to environmental stress, but also the speed with which this response occurs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.