488
Views
89
CrossRef citations to date
0
Altmetric
Original Article

Mechanism of copper-catalyzed autoxidation of cysteine

, &
Pages 23-34 | Received 01 Sep 1998, Published online: 07 Jul 2009
 

Abstract

The kinetics of copper-catalyzed autoxidation of cysteine and its derivatives were investigated using oxygen consumption, spectroscopy and hydroxyl radical detection by fluorescence of a coumarin probe. The process has complex two-phase kinetics. During the first phase a stoichiometric amount of oxygen (0.25 moles per mole of thiol) is consumed without production of hydroxyl radicals. In the second reaction phase excess oxygen is consumed in a hydrogen peroxide-mediated process with significant ·OH production. The reaction rate in the second phase is decreased for cysteine derivatives with a free aminogroup and increased for compounds with a modified aminogroup. The kinetic data suggest the catalytic action of copper in the form of a cysteine complex. The reaction mechanism consists of two simultaneous reactions (superoxide-dependent and peroxide-dependent) in the first phase, and peroxide-dependent in the second phase. The second reaction phase begins after oxidation of free thiol. This consists of a Fenton-type reaction between cuprous-cysteinyl complex and following oxidation of cysteinyl radical to sulfonate with the consumption of excessive oxygen and significant production of hydroxyl radicals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.