151
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterization of iron(III) oxide/polyvinyl chloride/poly(methyl methacrylate) nanocomposites

, , &
Pages 566-576 | Published online: 13 May 2016
 

ABSTRACT

Polyvinyl chloride/poly(methyl methacrylate) blended and iron(III) nanoparticle polyvinyl chloride/poly(methyl methacrylate) nanocomposites were prepared by solution casting. The iron(III) oxide nanoparticles were prepared using a sol-gel procedure and their particle size was less than 200 nm. Scanning electron microscopy showed that no phase separation occurred and polyvinyl chloride and poly(methyl methacrylate) were miscible. Scanning electron microscopy also showed that the iron(III) oxide nanoparticles were dispersed well within the polymer blend. Thermogravimetric analysis showed three stages for the thermal degradation for polyvinyl chloride/poly(methyl methacrylate) blend and the iron(III) oxide/polyvinyl chloride/poly(methyl methacrylate). The second degradation was possibly due to dehydrochlorination during the thermal degradation of polyvinyl chloride in the blend system. Young’s modulus of the iron(III) oxide nanoparticle filled nanocomposites was from 1987.7–2471.6 MPa, which was higher than polyvinyl chloride/poly(methyl methacrylate) blend (1955.5 MPa). The stress yield (47.9–51.8 MPa) of the iron(III) oxide nanoparticle composites was higher than pure polyvinyl chloride/poly(methyl methacrylate) (47.0 MPa). The cyclic voltammograms of the pure blend and the nanocomposites were compared.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 804.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.