225
Views
0
CrossRef citations to date
0
Altmetric
Biosensors

Novel electrochemical biosensor for Escherichia coli using gold-coated tungsten wires and antibody functionalized short multiwalled carbon nanotubes

, , , , &
Pages 109-124 | Published online: 15 Jun 2023
 

Abstract

Rapid and easy detection of pathogens, especially bacteria, plays an important role in daily life in the face of increasing environmental pollution. Nanosensors focus on carbon nanotubes, which can bind various molecules to large surfaces and have high electron conductivity. They are widely used in the development of electrochemical biosensors. In this study, a new design of electrochemical biosensors is presented by integrating gold-coated tungsten wires (GC-TW) and acid-functionalized multi-walled carbon nanotubes (MWCNTs) in a two-step coating process. GC-TWs are coated with acid-functionalized short MWCNTs. Fourier transforms infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) results show efficient immobilization of the electrodes. The performance for Escherichia coli (E. coli) K-12 is evaluated based upon the change in current following antibody-antigen interactions. Bioimpedance measurements are performed from 50 Hz to 10 MHz to achieve optimal coverage of impedance changes. The measurements show that the electrode has a detection limit of 0.8 CFU/mL. The response of the electrode saturates when the bacterial concentration is increased to 1.70 x 102 CFU/mL. The biosensor is capable of detecting E. coli between 0.8 and 1.70 × 102 CFU/mL. The data show that this MWCNT-based biosensor can be developed into a highly sensitive device for E. coli.

Graphical Abstract

Acknowledgments

We would also like to thank the Bahcesehir University, Faculty of Medicine, and İstanbul Technical University, Department of Control and Automation Engineering, for their laboratory facilities and support.

Disclosure statement

No conflict of interest has been reported by the authors.

Additional information

Funding

This work was supported by Istanbul University Scientific Research Projects Unit by Project Number 37475.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 804.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.