38
Views
1
CrossRef citations to date
0
Altmetric
Articles

Spatial Regulation of Inflammation by Human Aortic Endothelial Cells in a Linear Gradient of Shear Stress

, , , , , & show all
Pages 311-323 | Published online: 10 Jul 2009
 

Abstract

Objective: Atherosclerosis is a focal disease that develops at sites of low and oscillatory shear stress in arteries. This study aimed to understand how endothelial cells sense a gradient of fluid shear stress and transduce signals that regulate membrane expression of cell adhesion molecules and monocyte recruitment. Methods: Human aortic endothelial cells were stimulated with TNF-α and simultaneously exposed to a linear gradient of shear stress that increased from 0 to 16 dyne/cm2. Cell adhesion molecule expression and activation of NFκ B were quantified by immunofluorescence microscopy with resolution at the level of a single endothelial cell. Monocyte recruitment was imaged using custom microfluidic flow chambers. Results: VCAM-1 and E-selectin upregulation was greatest between 2–4 dyne/cm2 (6 and 4-fold, respectively) and above 8 dyne/cm2 expression was suppressed below that of untreated endothelial cells. In contrast, ICAM-1 expression and NFκ B nuclear translocation increased with shear stress up to a maximum at 9 dyne/cm2. Monocyte recruitment was most efficient in regions where E-selectin and VCAM-1 expression was greatest. Conclusions: We found that the endothelium can sense a change in shear stress on the order of 0.25 dyne/cm2 over a length of ∼ 10 cells, regulating the level of protein transcription, cellular adhesion molecule expression, and leukocyte recruitment during inflammation.

We would like to thank Dr. Sunichi Usami for his contribution of the original Hele-Shaw channel. This work is supported by NIH R01 AI47294 to SIS and NCI R01 CA082497 to MFI.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.