3
Views
0
CrossRef citations to date
0
Altmetric
Original

Role of Thromboxane A2 Receptor on the Effects of Oxidized LDL on Microvascular Endothelium Nitric Oxide, Endothelin-1, and IL-6 Production

, , , &
Pages 543-553 | Received 27 Jul 2007, Accepted 24 Dec 2007, Published online: 10 Jul 2009
 

Abstract

Objective: The aim of this study was to determine to what extent thromboxane A2 (TP) receptor mediates the effect of oxidated low-density lipoprotein (LDL) on nitric oxide (NO), interleukin (IL)-6, and endothelin-1 (ET-1) release by microvascular endothelial cells.

Methods: Endothelial nitric oxide synthase (eNOS), nitrites and nitrates (NO2/NO3), ET-1, and IL-6 production were measured following human microvascular endothelial cell 1 exposure to isoprostane-8-epi-PGF (F2IP), a natural agonist of the TP receptor present in oxidized LDL, or native, low-, or medium-oxidized LDL either with the TP-receptor blocker, SQ29.548, or its vehicle.

Results: F2IP and both native and oxidized LDL enhanced NO2/NO3. F2IP through the TP receptor stimulated eNOS (eight-fold), while the oxidized LDL effect (two-to five-fold) was only partially prevented by SQ29.548. While LDL concentration and degree of oxidation synergistically and independent of SQ29.548 stimulated IL-6, F2IP had no effect. F2IP induced a modest (+50%) increase in ET-1. LDL, independent of concentration or degree of oxidation, stimulated (+120%) ET-1 production, and this effect was only partially attenuated by SQ29.548.

Conclusions: In microvascular endothelial cells, LDL concentration and degree of oxidation synergistically stimulate NO and IL-6 production, but only NO release is largely mediated by the TP receptor. LDL facilitates ET-1 release independent of concentration and degree of oxidation; TP-receptor stimulation is only partially responsible for this effect.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.