3
Views
0
CrossRef citations to date
0
Altmetric
Original

Fluid Shear Attenuates Endothelial Pseudopodia Formation into the Capillary Lumen

, , &
Pages 531-542 | Received 08 Jan 2008, Accepted 09 Jan 2008, Published online: 10 Jul 2009
 

Abstract

Objective: Endothelial cells have the ability to undergo morphological shape changes, including projection of cytoplasmic pseudopodia into the capillary lumen. These cytoplasmic projections significantly influence the hemodynamic resistance to blood flow. To examine mechanotransduction mechanisms, we investigated in vivo the hemodynamic conditions in capillaries that control endothelial pseudopod formation.

Materials and Methods: Capillaries in rat skeletal muscle were fixed under carefully controlled perfusion conditions. The formation of endothelial pseudopodia were observed in cross-sections with electron microscopy and quantified with differential interference contrast microscopy under physiological, stasis, and reperfusion flow conditions.

Results: Application of physiological levels of fluid flow prevents capillary endothelium to project pseudopodia into the capillary lumen. Reduction of fluid flow to near zero promotes the incidence of pseudopod projection from 5% to 55% of capillaries. After capillary pseudopodia have formed under static conditions, about one-half retract upon restoration of fluid flow. The presence of red blood cells in the capillary lumen prevents pseudopod formation.

Conclusions: The results suggest that there is a mechanism that serves to control cytoplasmic projections in capillary endothelium that is under the control of hemodynamic fluid stress. Investigation of pseudopodia growth on endothelial cells may be significant in understanding capillary obstruction in cardiovascular diseases.

ACKNOWLEDGMENTS

This work was supported, in part, by NSF Grants IBN 9876379 and Grant HL 43026 and HL 10881 from the NHLBI.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.