523
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Changes in electroencephalography complexity and functional magnetic resonance imaging connectivity following robotic hand training in chronic stroke

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 276-288 | Received 29 Mar 2020, Accepted 25 Jul 2020, Published online: 17 Aug 2020
 

ABSTRACT

Introduction: In recent years, robotic training has been utilized for recovery of motor control in patients with motor deficits. Along with clinical assessment, electrical patterns in the brain have emerged as a marker for studying changes in the brain associated with brain injury and rehabilitation. These changes mainly involve an imbalance between the two hemispheres. We aimed to study the effect of brain computer interface (BCI)-based robotic hand training on stroke subjects using clinical assessment, electroencephalographic (EEG) complexity analysis, and functional magnetic resonance imaging (fMRI) connectivity analysis. Method: Resting-state simultaneous EEG-fMRI was conducted on 14 stroke subjects before and after training who underwent 20 sessions robot hand training. Fractal dimension (FD) analysis was used to assess neuronal impairment and functional recovery using the EEG data, and fMRI connectivity analysis was performed to assess changes in the connectivity of brain networks. Results: FD results indicated a significant asymmetric difference between the ipsilesional and contralesional hemispheres before training, which was reduced after robotic hand training. Moreover, a positive correlation between interhemispheric asymmetry change for central brain region and change in Fugl Meyer Assessment (FMA) scores for upper limb was observed. Connectivity results showed a significant difference between pre-training interhemispheric connectivity and post-training interhemispheric connectivity. Moreover, the change in connectivity correlated with the change in FMA scores. Results also indicated a correlation between the increase in connectivity for motor regions and decrease in FD interhemispheric asymmetry for central brain region covering the motor area. Conclusion: In conclusion, robotic hand training significantly facilitated stroke motor recovery, and FD, along with connectivity analysis can detect neuroplasticity changes.

Acknowledgments

This study is supported by Hong Kong Research Grant Council (GRF No: 14208118), Hong Kong. The authors would like to thank the research staff, research students and clinicians for their cooperation in conducting the experiment.

Disclosure of interests

The authors report no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 114.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.