226
Views
0
CrossRef citations to date
0
Altmetric
Original Research Paper

Antifungal activity of essential oils against fungi isolated from air

ORCID Icon, , ORCID Icon &
Pages 181-186 | Received 27 Oct 2017, Accepted 27 Feb 2018, Published online: 08 Mar 2018
 

Abstract

Fungal contamination of indoor air is an issue of increasing public health concern. Essential oils have been demonstrated to have antifungal capabilities, but there are limited studies investigating the efficacy of essential oils against fungi relevant to air quality. This study provides a preliminary screening of the antifungal properties of clove, lavender and eucalyptus essential oils against a range of fungal species isolated from environmental air samples. The ability of the essential oils to inhibit fungal growth was examined using the disk diffusion assay on malt extract agar and was compared with vinegar, bleach and limonene, with phenol as a positive control. Results identified essential oils which demonstrated antifungal potential against species of environmental origin. Clove oil was found to be most efficacious, with eucalyptus and lavender oils showing some antifungal potential albeit less broad spectrum and with less persistence over time in this assay. All essentials oils performed better than traditional cleaning compounds such as vinegar. Clove oil would be a suitable candidate for further research to validate its use in improving indoor air quality. Further research should next take into consideration the practical application method, concentration and long-term persistence of antifungal properties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.