169
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Performance of a Run-Around System for HVAC Heat and Moisture Transfer Applications Using Cross-Flow Plate Exchangers Coupled with Aqueous Lithium Bromide

, , &
Pages 313-336 | Received 09 May 2005, Accepted 04 Oct 2005, Published online: 28 Feb 2011
 

Abstract

A two-dimensional steady-state mathematical model is developed to study the heat and water vapor transport in a run-around heat and moisture exchanger coupled with a lithium bromide solution for air-to-air exchanger applications. A finite difference method is employed to solve the governing equations of the heat and moisture exchange, which gives the outlet air properties and effectiveness for selected operating conditions for each cross-flow exchanger. Using algorithms for the HVAC supply and exhaust exchangers coupled with a run-around liquid loop, the overall effectiveness of the run-around energy recovery system is shown to be dependent on the flow rate of both the pumped fluid and each airflow, the size and design of each exchanger, and the inlet operating conditions. It is shown that an overall effectiveness of 70% can be achieved when the run-around exchanger sizes and operating conditions are correctly chosen.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.