253
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Uncertainty analysis for a virtual flow meter using an air-handling unit chilled water valve

, &
Pages 335-345 | Received 19 Sep 2012, Accepted 30 Dec 2012, Published online: 28 Apr 2013
 

Abstract

A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure (DP) across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the uncertainty in the measurements could be significantly greater than for conventional hardware flow meters. In this article, mathematical models are developed and used to conduct uncertainty analyses for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded an uncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study. Furthermore, the results show that the total uncertainty in flow rates from this virtual flow meter is adequately low for use in place of common physical flow meters for monitoring thermal energy use in air handlers and detecting operational and equipment faults that affect energy consumption.

Acknowledgment

The work presented in this paper was partially funded by the U.S. Department of Energy Building Technologies Program.

Li Song, PhD, PE, Member ASHRAE, is Assistant Professor. Gang Wang, PhD, PE, Member ASHRAE, is Assistant Professor. Michael R. Brambley, Fellow ASHRAE, is Senior Research Scientist.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 78.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.