334
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Superheating control using an adaptive PID controller

, , &
Pages 424-434 | Received 12 Mar 2013, Accepted 02 Dec 2013, Published online: 09 May 2014
 

Abstract

Electronic expansion valves have been used to replace conventional expansion devices in many refrigeration systems. Electronically controlled valves respond more rapidly to changes in operating conditions and improve the steady-state superheating. These valves are usually used with an automatic controller that regulates the superheating at the evaporator outlet. The controller gains (Kp, Ti, and Td) must be properly tuned for efficient operation. However, these controllers can result in poor performance because they have been poorly tuned or put into operation using factory tuning. For refrigeration systems that are subject to large changes in operating conditions, the controller gains should be adjusted for each change to improve the system performance. Within this context, we developed an adaptive Proportional-Integral-Derivative controller (PID controller) in this study to regulate the degree of superheating. A dynamic model obtained from experimental tests was used in the controller design. The controller effectiveness was evaluated using computer simulations and experimental tests. In comparison to a nonadaptive PID controller, the adaptive controller provided better disturbance rejection and set-point tracking and was able to control the superheating more efficiently, demanding less servomotor effort.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 78.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.