332
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

The protective effect of betanin and copper on spinal cord ischemia–reperfusion injury

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 704-710 | Published online: 30 Mar 2020
 

Abstract

Context: Both copper and betanin have been implicated as having significant bioactivity against ischemic damage in a variety of experimental and clinical settings. The aim of this study is to investigate whether betanin and copper have any protective effect on spinal cord in an ischemia–reperfusion (I/R) model in rats.

Design: Spraque-Dawley rats were used in four groups: Sham group (n = 7), control group (laparotomy and cross-clamping of aorta, n = 7), betanin treatment group (dosage of 100 mg/kg of betanin administered intraperitoneally (i.p.) 60 min before laparotomy, n = 7), copper sulfate treatment group (administered copper sulfate i.p. at a dose of 0.1 mg/kg/day for 7 days before laparotomy, n = 7). Malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) and superoxide dismutase (SOD) activity were measured. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was also performed to evaluate apoptosis.

Setting: Kafkas University, Faculty of Medicine, Kars, Turkey.

Results: I/R injury was successfully demonstrated with the surgical model. Betanin and copper treatment significantly decreased MDA levels, MPO activity and the number of apoptotic cells in the spinal cord. Betanin and copper treatment significantly increased GSH levels. Copper treatment significantly increased SOD activity, whereas betanin was not as effective. Apoptotic cells were significantly decreased in both treatment groups.

Conclusion: I/R injury of the spinal cord can be successfully demonstrated by aortic clamping in this surgical model. Betanin/Copper sulphate has ameliorative effects against operative I/R injury. Low toxicity of those agents makes them ideal targets for clinical research for this purpose.

Additional information

Funding

This work was supported by Kafkas University [BAP #2017-TS-14].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 184.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.