46
Views
19
CrossRef citations to date
0
Altmetric
Mini Review

Unifying Electrostatic Mechanism for Phosphates and Sulfates in Cell Signaling

, &
Pages 433-443 | Published online: 10 Oct 2008
 

Abstract

Prior proposals suggested the importance of electrochemistry in signal transduction and receptor-ligand activity. Electrostatic fields associated with ions and dipoles were assigned important roles. Little is known concerning the precise mode of action in cell signaling by widespread phosphorylation. According to the hypothetical framework, molecular electrostatic potential associated with phosphate anion is a key element as a link in the communication grid, possibly inducing favorable energetics in the electron transfer process. Similar involvement appears plausible for the sulfate anion. Supporting evidence for the electrostatic mechanism is presented. Representative literature on phosphorylation in the biological domain is reviewed with emphasis on cell signaling. The treatment includes phosphates from protein, lipids, and other molecules, plus the role of reactive oxygen species. Protein sulfation is also discussed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.