146
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Pharmacophore modeling, 3D-QSAR, and in silico ADME prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents

, , , &
Pages 259-266 | Received 02 Mar 2016, Accepted 17 Jul 2016, Published online: 08 Sep 2016
 

Abstract

Biological mechanism attributing mutations in KCNQ2/Q3 results in benign familial neonatal epilepsy (BFNE), a rare form of epilepsy and thus neglected. It offers a potential target for antiepileptic drug discovery. In the present work, a pharmacophore-based 3D-QSAR model was generated for a series of N-pyridyl and pyrimidine benzamides possessing KCNQ2/Q3 opening activity. The pharmacophore model generated contains one hydrogen bond donor (D), one hydrophobic (H), and two aromatic rings (R). They are the crucial molecular write-up detailing predicted binding efficacy of high affinity and low affinity ligands for KCNQ2/Q3 opening activity. Furthermore, it has been validated by using a biological correlation between pharmacophore hypothesis-based 3D-QSAR variables and functional fingerprints of openers responsible for the receptor binding and also by docking of these benzamides into the validated homology model. Excellent statistical computational tools of QSAR model such as good correlation coefficient (R2 >0.80), higher F value (F > 39), and excellent predictive power (Q2 > 0.7) with low standard deviation (SD <0.3) strongly suggest that the developed model could be used for prediction of antiepileptic activity of newer analogs. A preliminary pharmacokinetic profile of these derivatives was also performed on the basis of QikProp predictions.

Acknowledgements

The authors are thankful to Prof. Huaiyu Yang for providing KCNQ2 homology model and the Department of Science and Technology for providing INSPIRE fellowship (Sanction Order No. DST/INSPIRE/Fellowship/2014/241) and also grateful to Schrodinger Inc., USA and Central University of Rajasthan for providing licensed Schrodinger molecular modeling software.

Disclosure statement

The authors have no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.