81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of ERK1/2 signal pathway on cardiomyocyte during glucose lowering

, , , , &
Pages 365-369 | Received 21 Apr 2016, Accepted 31 Oct 2016, Published online: 08 Feb 2017
 

Abstract

Objective: This study investigated whether the extracellular signal-regulated kinase 1/2 (ERK1/2) signal pathway affects cardiomyocyte apoptosis and the expression of tumor necrosis factor (TNF-α) at different glucose-lowering rates.

Methods: Cardiomyocytes of Wistar neonate rats were maintained in a medium supplemented with 25 mmol/L glucosamine for 72 h. Then the medium was changed to different concentrations of glucosamine, and all cells were divided into five groups. The survival rate of cardiomyocyte was measured using the Cell Counting Kit-8; cardiomyocyte apoptosis was measured using the flow cytometry instrument and laser confocal microscope; TNF-α was measured using the enzyme-linked immunosorbent assay; and ERK1/2 protein and phosphorylation were measured using the Western blot. Cardiomyocyte apoptosis and TNF-α were measured again after adding U0126.

Results: As the glucose-lowering rate increased, the survival rate of cardiomyocytes increased in group B and decreased in groups C, D, and E. The TNF-α concentration increased in groups B, C, and D and decreased in group E. After 24 h, the apoptosis rate decreased in group B and increased in groups C, D, and E. The expression of p-ERK1/2 increased in groups B, D, and E, and was the lowest in group C. After adding U0126, the survival rate of cardiomyocyte in all groups increased and TNF-α concentration decreased.

Conclusions: The influence of glucose-lowering rate on cardiomyocyte apoptosis and TNF-α was caused by the p-ERK1/2 pathway. During the glucose-lowering course, the p-ERK1/2 pathway promoted cardiomyocyte apoptosis, and TNF-α secretion was related to not only osmotic pressure but also ERK1/2 signal pathway activation.

Disclosure statement

No potential conflict of interest relevant to this article was reported.

Additional information

Funding

This work was supported by Natural Science Foundation of Heilongjiang Province, China [H201438].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.