93
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico and in vitro antioxidant and anticancer activity profiles of urea and thiourea derivatives of 2,3-dihydro-1H-inden-1-amine

, , , , ORCID Icon, & show all
Pages 34-41 | Received 08 Nov 2019, Accepted 23 Dec 2019, Published online: 07 Jan 2020
 

Abstract

Synthesis of a series of new urea and thiourea compounds have been accomplished by the reaction of 2,3-dihydro-1H-inden-1-amine with various phenyl isocyanates and isothiocyanates. These compounds were evaluated for their antioxidant activity by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and nitric oxide (NO) radical scavenging assay methods including IC50 values. Some of the compounds exhibited potential activity in the two tested methods. Among the series of compounds, urea derivative linked with 4-bromo phenyl ring (4b), and thiourea derivatives bonded with phenyl ring (4e), 4-fluoro phenyl ring (4f) and 4-nitro pheyl ring (4h) were found to exhibit promising anti oxidant activity with low IC50 values. Where four of the title comounds exhibited higher bindig energies than the reference compound (Imatinib) in in silico molecular docking studies with Aromatase. All the synthesized compounds were characterized by IR, 1H, 13C NMR and mass spectral data.

Disclosure statement

All the authors declare that no conflict of interest in this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.