181
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition of endoplasmic reticulum stress through activation of MAPK/ERK signaling pathway attenuates hypoxia-mediated cardiomyocyte damage

&
Pages 532-537 | Received 18 Feb 2020, Accepted 28 Sep 2020, Published online: 06 Oct 2020
 

Abstract

The pathogenesis of post-infarction ischemia-induced myocardial damage is related to hypoxia-mediated cardiomyocyte damage. In the present study, we explored the roles of ERK signaling pathway and endoplasmic reticulum (ER) stress in hypoxia-related cardiomyocyte damage. H9c2 cells were cultured under hypoxia condition in the presence of the ERK activator. Our data demonstrated that ER stress was significantly activated by hypoxia in cardiomyocyte, as evidenced by increased expression of PERK and CHOP through immunofluorescence. Interestingly, application of ERK activator significantly reduced hypoxia-mediated ER stress. Besides, ERK activation also sustained cardiomyocyte viability in the presence of hypoxia, as evidenced by decreased activities of caspase-3 and caspase-9. Altogether, our results demonstrated that ERK activation significantly promoted cardiomyocyte survival through inhibition of ER stress. This finding provides a novel insight into the molecular mechanism underlying hypoxia-mediated cardiomyocyte damage. Besides, our results also offer a potential target for the treatment and prevention of post-infarction ischemia-related myocardial damage.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.