123
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Sauchinone inhibits hypoxia-induced invasion and epithelial–mesenchymal transition in osteosarcoma cells via inactivation of the sonic hedgehog pathway

&
Pages 173-179 | Received 03 Dec 2020, Accepted 22 Jan 2021, Published online: 09 Feb 2021
 

Abstract

Hypoxia is a typical feature of solid tumors and is closely associated with tumor progression. Sauchinone, a biologically diastereomeric lignan, is isolated from the root of Saururus chinensis and has been widely used for the treatment of various diseases. Recently, sauchinone has been reported to play an anti-cancer role in cancer development under normoxia or hypoxia. However, the specific effects of sauchinone on osteosarcoma (OS) remain unclear. The aim of the present study was to investigate the role of sauchinone in OS progression under hypoxic conditions. The human OS cell lines U2OS and MG-63 were exposed to hypoxia followed by treatment with sauchinone. Cell viability was assessed by the CCK-8 assay. Cell migration and invasion were detected by transwell assays. The expression levels of VEGF, HIF-1α, E-cadherin and N-cadherin were examined by the western blot analysis. Our study showed that OS cell migration and invasion were significantly enhanced by hypoxia. Besides, hypoxic conditions resulted in a remarkable change in the expression of EMT markers. All these effects induced by hypoxia were abrogated by sauchinone treatment. Moreover, sauchinone inhibited hypoxia-induced activation of the sonic hedgehog (Shh) pathway. Additionally, the Shh agonist reversed the inhibitory effect of sauchinone on hypoxia-induced invasion and EMT of OS cells. In conclusion, these findings demonstrated that sauchinone inhibits hypoxia-induced invasion and EMT in OS cells via inactivation of the Shh pathway. We provided a novel insight for understanding the mechanisms underlying the anti-cancer effect of sauchinone and suggested sauchinone as a promising agent for OS treatment.

Disclosure statement

The authors declare that they have no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.