490
Views
6
CrossRef citations to date
0
Altmetric
Articles

Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures

ORCID Icon, &
Pages 118-128 | Published online: 10 Apr 2020
 

Abstract

Cooling workwear using phase change materials (PCMs) was designed for miners in hot underground mines. A new arrangement of PCM packs was introduced that used 15 °C PCMs as the inner layer and 23 °C PCMs as the outer layer (15&23). Its performance was investigated using thermal manikin and human subject tests by comparison with clothing without PCMs (CON), with 15 °C PCMs (15&15) and with melted PCMs (mPCM) in a climate chamber (30 °C, 80% relative humidity). The PCM cooling workwear significantly increased the manikin heat loss, attenuated the rise of skin temperatures and improved thermal sensation and comfort. The cooling duration was extended in 15&23 as compared with 15&15. The added PCMs did not affect the perceptual exertion and body mobility. In summary, cooling workwear using PCMs with different temperatures can be an effective option for miners’ personal cooling in a hot and humid environment.

Acknowledgements

The authors wish to acknowledge the volunteers for their assistance in the experiments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Fundamental Research Funds for the Central Universities [Grant JUSRP51735B].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 279.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.