522
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

STATISTICAL MEDIA OPTIMIZATION FOR THE BIOMASS PRODUCTION OF POSTHARVEST BIOCONTROL YEAST Rhodosporidium paludigenum

, , , &
Pages 382-397 | Published online: 03 Oct 2011
 

Abstract

A cane molasses-based medium for the biomass production of biocontrol agent Rhodosporidium paludigenum was statistically optimized. Molasses concentration (after pretreatment), yeast extract, and initial pH were identified by the Plackett–Burman design to show significant influence on the biomass production. The three factors were further optimized by central composite design and response-surface methodology. The statistical analysis indicated the optimum values of the variables were 89.98 g/L for cane molasses, 2.35 g/L for yeast extract and an initial pH of 8.48. The biomass yield at the optimal culture achieved 15.89 g/L in flask fermentation, which was 2.1 times higher than that at the initial NYDB medium. In a 10-L fermenter, 18.97 g/L of biomass was obtained after 36 hr of cultivation. Moreover, the biocontrol efficacy of the yeast was investigated after culture optimization. The results showed the yeast harvested in the optimal medium maintained its initial biocontrol properties by reducing the percentage of decayed apples to below 20%.

ACKNOWLEDGMENTS

This research was supported by the grants from the National Natural Science Foundation of China (30771514) and the Research Fund for the Doctoral Program of Higher Education (20090101120079).

Notes

Note. R-Sq = 97.20%; R–Sq (adjust) = 94.67%.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.