233
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Modification with polysialic acid–PEG copolymer as a new method for improving the therapeutic efficacy of proteins

, , , &
Pages 788-797 | Published online: 12 Oct 2016
 

ABSTRACT

A new protein derivatization method was developed with a block copolymer to reduce the immunogenicity of therapeutic proteins. The block copolymer consisted of polyethylene glycol (PEG) and polysialic acid (PSA), a nonimmunogenic and biodegradable biopolymer. Uricase was used as a model protein. Molecular weight analysis results indicated that the uricase–PEG–PSA conjugate was linked with 2.5 copolymers for each uricase unit. The residual enzyme activity of the uricase with modification by the PEG–PSA copolymer was 72.4%. The tolerance and stability to heat, acid, alkaline, and trypsin treatments significantly improved compared with the native uricase. The immunogenicity of uricase modified with PEG–PSA copolymer was remarkably reduced. The transmission electron microscopy results of the uricase–PEG–PSA conjugate showed a spherical hydrated shell with a larger particle size. These findings proved that the PSA–PEG–protein conjugate is a formulation that can potentially be used to deliver the protein and peptide-based drugs.

Acknowledgment

We are grateful for comprehensive comments and suggestion from Dr. Jing-Hua Chen in School of Medicine, Jiangnan University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.