167
Views
8
CrossRef citations to date
0
Altmetric
Articles

Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1

, , , , , , , & show all
Pages 768-774 | Received 04 Jun 2018, Accepted 21 Jul 2018, Published online: 10 Oct 2018
 

Abstract

Strain Bacillus amyloliquefaciens BH1 was evaluated for the generation of α-amylase. Culture conditions and medium components were optimized by a statistical approach for the optimal generation of α-amylase with response surface methodology (RSM) method. The Plackett–Burman (PB) design was executed to select the fermentation variables and Central composite design (CCD) for optimizing significant factors influencing production. The optimum levels for highest generation of α-amylase activity (198.26 ± 3.54 U/mL) were measured. A 1.69-fold improve generation was acquired in comparison with the non-optimized. Partial characterization of the α-amylase indicated optimal pH and temperature at 7.0 and 40 °C, respectively. Crude α-amylase maintained a constant pH range 5.0–8.0 and 30–70 °C. The α-amylase was independent of Ca2+, and the activity was inhibited by Fe3+, Co2+, Cu2+, and Hg2+. The thermo and pH stability of the α-amylase indicate its extensive application in the food and pharmaceutical industries.

Additional information

Funding

This work was supported by the financial aid from the National Science-Technology Support Program of China [grant numbers 2015BAD16B01].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.